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SHORT TIME BEHAVIOR OF THE HEAT KERNEL
AND ITS LOGARITHMIC DERIVATIVES

PAUL MALLIAVIN & DANIEL W. STROOCK

Abstract

Let M be a compact, connected Riemannian manifold, and let pi(z,y) de-

note the fundamental solution to Cauchy initial value problem for the heat

equation %% = %Au, where A is the Levi-Civita Laplacian. The purpose

of this note is to study the asymptotic behavior of derivatives of log pe( -, %)
at z as t ¢ 0. In particular, we show that a dramatic change takes place
when z moves inside the cut-locus of y.

0. Introduction

Let M be a compact, connected, d-dimensional Riemannian manifold,
denote by O(M) with fiber map = : O(M) — M the associated bundle of
orthonormal frames e, and use the Levi-Civita connection to determine the
horizontal subspace He((’)(M)) at each f € O(M). Next, given v € R?, let
&(v) be the basic vector field on O(M) determined by properties that

E(v)e € H(O(M)) and dr€(v), =ev for all e € O(M).

(Here, and whenever convenient, we think of ¢ as an isometry from R? onto
Tr(e)(M).) In particular, if {e;,...,e4} is the standard orthonormal basis
in R?, then we set €x(e) = €(ey).. If, for O € O(d) (the orthogonal group
on R?Y) Rp : O(M) — O(M) is defined so that

Roev=¢0v, e¢€O(M)andveRe,
then it easy to check that
(0.1) dRo€&(v), = QS((’)TV)ROe, ¢ € O(M) and v € R%.
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Given a smooth function F on O(M), we define VF : O(M) — R,
Hess (F) : O(M) — Hom(R?¢; R?), and AF : O(M) — R by :
d

VF = Z ErFer, Hess(F)= ((Q‘fk ° eﬁF))lgk,Zﬁd
1

(0.2) J
and AF = Z G%F.
1

In particular, when f is a smooth function on M, we set
Vi=V(fon), Hess(f)=Hess(for), and Af=A(fomn).
Starting from (0.1), it is an easy matter to check that

(Vf)oRo =0TV, (Hess(f))oRo=0"Hess(f)O,
and (Af)oRp=Af.

Hence, |V f|, HHess ( f)“H_S' (the Hilbert-Schmidt norm), and Af are all
well-defined on M. In fact, Af is precisely the action of the Levi-Civita
Laplacian on f.

Now consider the Cauchy initial value for the heat equation

% = %Au, t € (0,00) with limpgu(t,z) = f(z), z € M.

By standard elliptic regularity theory, one knows that there is a unique,
smooth function (¢,z,y) € (0,00) X M x M — pi(z,y) € (0,00) such that

ult, z) = /Mf<y)pt<z,y) Mr(dy),  (6,2) € (0,00) x M, f € C(M;R),

where Aps denotes the normalized Riemann measure on M. Moreover, be-
cause A is essentially self-adjoint in L2(Aps), pi(z, y) = pi(y, z).

By any one of a number of different procedures, one can obtain Varad-
han’s result:

dist(z, y)?
2 b
In fact, the limit in (0.3) is taken uniformly with respect to (z,y) € M2. The

probabilistic intuition behind Varadhan’s result comes from the Feynman-
type path integral representation

1
09  me=c@ [ ew(-z [ wora) o
p(0)=z & p(1)=y

: lim T'1 = M.
(0.3) T%T og pr(z,y) T,y €
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where the right-hand side is supposed to convey the idea that one is inte-
grating over all paths p € C([0,1]; M) which run from z to y, and one is
weighting paths in a Gibbsian manner according to their energy. Consider-
ing what utter non-sense (0.4), as it stands, is, results like Varadhan’s are
surprising. But, experience has taught us that, ridiculous as it appears, (0.4)
is, nonetheless, unreasonably correct; a conclusion for which the present ar-
ticle can be viewed as further corroboration. In fact, basing our reasoning on
the intuition coming from (0.4), our aim here is to examine what happens,
as T, 0, to derivatives of logpr(-,y). Obviously, as soon as one starts
taking derivatives, one should expect the behavior outside the cut-locus to
be different from that inside the cut-locus, where the distance function is
no longer smooth. In terms of (0.4), what one suspects is that the problems
will arise from a breakdown of the Laplace asymptotic method due to the
degeneracy of the minimization problem

min{ [ 150 dt: (0) = 2 and p() =

when z lies inside the cut-locus of y. As the development which we give
below makes manifest, this is precisely what happens.

In Section 1, we develop explicit formulae (cf. (1.8) and (1.9)), in terms
of integrals with respect to Wiener’s measure, for the first two spatial deriva-
tives of log pr( -,y). Consideration of the cut-locus does not affect the valid-
ity of these formulae, but its potential réle is already evident in the expres-
sion (1.9) for the logarithmic Hessian. Namely, that expression segregates
naturally into terms of order 7! and terms of order T2, Terms of order
T~! are what one should expect on the basis of (0.3). In particular, if one
hopes to exchange two derivatives with the limit in (0.3), then one must
show that the terms of order 772 in (1.9) disappear in the limit. Remark-
ably, these terms of order T2 can be recognized as a variance. Hence, if, in
a sufficiently strong sense, the Wiener integral is concentrating (as 7' N, 0)
along a single path, then this term should tend to 0 because the random
variable of which it is the variance is becoming constant. On the other hand,
if there is more than one path to which the Wiener integral is giving mass in
the limit, then this variance should remain positive and the terms of order
T~2 will become the dominant ones. Thus, the existence of more than one
minimizing geodesic (or even of a non-trivial Jacobi field) has the potential
to radically change the behavior of the logarithmic Hessian.

The asymptotic analysis of (1.8) and (1.9) is carried out in Section 2.
What is involved is an application of the theory of large deviations, as de-
veloped in [3]. (Closely related applications are given in [4].) What we show
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(cf. Corollary 2.29) is that as long as z stays outside the cut-locus of y
(0.3) holds, even after taking derivatives up to the second order. On the
other hand, if z lies at the cut-locus of y, then (cf. Theorem 2.35) (0.3) may
break down, even after taking only one derivative. In fact, under additional
technical conditions, we show that the second derivatives of log pr(-,y) will
be of order 772 at the cut-locus of y.

1. Logarithmic derivatives of the heat flow semigroup

In this section, we re-formulate some results from [5] in a way which
makes them more amenable to the theory of large deviations as it was de-
veloped in {3].

Let 20 be the separable Banach space (with respect to the uniform con-
vergence) of continuous paths w : [0,1] — R satisfying w(0) = 0, and
use Bgy to denote the Borel field over 25. In addition, for each ¢ € [0,1], Bt
will denote the o-algebra generated by w € 20 — w(7) € R? as 7 varies
~over [0,¢]. Finally, we will use p to denote the standard Wiener measure
on (20, Byy), and, for each T' € (0,1] we take yur to be the distribution of
w € 20— VT w € 20 under p.

Next, given a frame ¢ € O(M) and T" € (0, 1], define . : [0,00) x W —
O(M) to be the ur-almost surely unique, progressively measurable (relative
to {B; : t > 0}) solution to the Stratonovich stochastic differential equation!

d
dFe(t,w) = > € (Fe(t,w)) o dw(t)y with F.(0,w) =e.
k=1

As an easy application of 1td’s formula and (0.2), one sees that, for any
T €10,1] and f € C(M;R),

L) B [(fom(E)] = [Pro](r(e) = [ @) pr(r(e).v) Muelay).

We will next use the procedure developed in [2] and [5] to pass from (1.1) to
representations of derivatives of log pr( -, ¥). Unfortunately, this will require
some additional notation.

The solder form w : T(O(M)) — R? is the 1-form defined so that, for
each ¢ € O(M) and X, € T.(O(M)), dnX, = ew(X,). Thus, the vertical
subspace at e is precisely the null space of w | T.{(O(M)). Next, let o(d)

1Obviously, the full definition of w € 20— F.(-,w) € C([0,1}; M) really depends on
T, but we have chosen to suppress this dependence in the interest of simplifying notation.
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stand for the Lie algebra of skew symmetric d X d-matrices, remember that
o{d) can be identified with the Lie algebra of left-invariant vector fields on
O(d), and let A be the map of o(d) into the T(O(M)) given by

d
dt
Clearly, A € o(d) —> A(4), € T.(O(M)) provides an isomorphism be-
tween o(d) and the vertical subspace at e. Thus, we can define the con-

nection 1-form ¢ : T(O(M)) — o(d) so that, for each ¢ € O(M) and
X, € T.(O(M)),

A(A)e = — R, tae

, A€ o(d) and e € O(M).

d
Xe— M¢(X.)) = Y w(Xe)r€i(e) is the horizontal part of X.
k=1

Equivalently, A(¢(X.)) is the vertical part of X,. Finally, the Riemann curv-
ature 2-form ® : T(O(M))? — o(d) is the horizontal part of the exterior
derivative d¢ of ¢. We set

(1.2) B(v,v) = @(€(v),€(v").), ¢€ O(M)andv,v €R?,
define the Ricci curvature matrix Ric : O(M) — Hom(R?; R?) by

d

(v,Ric(e)v')Rd = Z(‘I)(v, ek)eek,v’)Rd, v,v e R%,

and, for each T € (0,1], determine the progressively measurable map
A, 7:[0,1] x 20 — Hom(R?¢; R?) by

t
(1.3) Acr(t, w) + g / Ric(§e(r, w)) Aerr(r, w)dr = L.
0

The following equation is a minor generalization of (2.2) in [5], when one
takes into account the use of pur in place of u:
(1.4)

T [e(v) log Prf o 7r] (e)
1
= (Prs @) [ [ (At w0, aw®) L o w(50 )|

for any f € C(M;(0,00)) and 1 € C*([0, 1]; R?) with n(0) = 0 and n(1) =
v € R4,
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We next want to make the analogous translation of (2.12) in [5]. For this
purpose, let 7 € H be given, and define the progressively measurable map
$e,Tq ¢ [0,1] X 20— o(d) so that

(€ durn(twie)_,
t .
(1.5) = /0 (2(¢ 5. Aeiz(r, W) (1(1) = (7)), 0dw(r)) _, |
£,¢ R

Then, for f € C(M;(0,00)) and n € C%([0,1];R?) with n(0) = 0 and
n(1) = v:

T (v, [Hesslog Prf o ] (e)v)

=T[&(v)’log Prf o ] (e)

=— (Prf(z))™ (IE“T [(/:IAg,T(t,W)’i’](t)lz dt

R4

1
0

- [ (3t mrcate wi®), oaw)
(1.6)

+T/01(w(1) - w(t),Re,T,n(t,w))Rddt)f ovr(%e(l,w))])

1

-+ T ((PTf(-T))_llEuT l:(/: (Ae,T(t:w)'fl(t):dw(t))Rd)z f OW(Se(l,w))]

~ (Prf(a) B Uﬂl (Aertt, wyn(®),dw(®) , fom(5(1, w))] 2) |

where Re 7 @ [0,1] x 20 — R¢ is a progressively measurable function
which satisfies

(L.7) |Re7n(t, w)| < Clinlicz(o,1:re)

for some C < co.

Clearly (1.4) and (1.6) can be interpreted in terms of conditional expec-
tations. In fact, because all the functionals involved are smooth in the sense
of the Sobolev calculus on Wiener space and, in addition, the map F.(1, )
is non-degenerate, one can, for each y € M, take f in both (1.4) and (1.6) to
be the Dirac delta function d, (relative to the Riemannian volume measure
on M), in which case (1.4) becomes

T [&(v) log pr( i,y)](e)
—7 | [ (Acateomit o),

0

(1.8)

mofil,w) =]
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and (1.6) becomes

T (v, [Hess log pr( -, y)](e)v) RY
=T [€&(v)*log pr(-, y)] ()

=l At wyi(o)]

1
- /0 (¢2,Tﬂ7 (t, w) A r(t, w)n(t), OdW(t))le
(1.9)

1
+ T./o (w(l) —w(t),Rern(t, w))Rd dt | moFe(l,w) = y]

ST (",

- B [/01 (AeaT(t’ w)n(t), dw(t)) R¢

2

moF(l,w) = yjl

7o Fe(l,w) = y]2>,

Remark 1.10. Note that, in (1.8) and (1.9), there are no almost ev-
erywhere statements accompanying the conditional expectations. This is
because, as alluded to above, we know that these conditional expectations
exist as continuous (in fact, smooth) functions of y € M.

2. Some large deviation results

Starting from (1.8) and (1.9), we will apply in this section results from
[3] to analyze the limit behavior of the first two logarithmic derivatives of
pr(-,y) as T N\, 0; and for this purpose, we must begin by reviewing some
terminology. In particular, recall (cf. Sec. 2 of Chap. 13 in [1]) that, for a
given y € M, the cut-locus Cp,(y) of y is the set of z € M for which at least
one of the following conditions obtains:

(i) There exists more than one minimizing geodesic v : [0,1] — M
joining z to y. _

(ii) There is precisely one minimizing geodesic 7 : [0,1] — M from z
to y, and there exists along v a non-trivial Jacobi field ¢ € [0, 1] — W (¢) €
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T',)(M) which vanishes at both end points; that is:
D
W) =0, 20 £0, W(1) =0,
w
and i (t) + Riem(¥(t), W (t))¥(t) = 0.

Equivalently, z € Cpn,(y) if and only if either exp;(y) contains more than
one element or exp;l(y) = {X,} for some X, € T,(M) and the map
exp, (Xz), : Tx, (To(M)) — T,(M) is singular. From this latter descrip-
tion, it is an easy matter to see that Cp,(y) is closed.

The relevance of these considerations to us is most easily seen after one

introduces the following constructions. Namely, let z € M and ¢ € 771 (2)

be given, and take We(,;)(O(M)) to be the space of absolutely continuous

curves §e : [0,1] — O(M) with the properties that
5.(0) =, w(@e( 1)) € L*([o, 1); R%), and ¢(Se()) =0 a.e..

Equivalently, if H = Wélz) (R%) is the space of absolutely continuous R¢-
valued functions h on [0, 1] with h(0) = 0 and h € L?([0, 1]; R?), then

w3 (OM)) = {3.(-,h) : he H},
where t € [0, 1] —> F.(t,h) € O(M) is determined by?
elt,h) = E(B(H));, ) With Fe(0,h) =

In fact, we can give Wc(,;) ((’)(M)) the structure of a Polish space by declaring

heHr— F.(-,h) € We(,12) (O(M)) to be an isometry. Notice that
(21) h, S hinH = F.(-,h,) — F(-,h) in C([0,1]; O(M)).
In particular, for each y € M,

(2.2) H(e,y) = {g€H: moF.(l,8) =y}

is closed in the weak topology.

2For each v € R?, £(v) is the vector field on O(M) such that, for each ¢ € O(M),
E(v). is the horizontal lift of ev € T} (,y(M) to e.
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Next, given (g,h) € H?, there is (cf. Theorem 2.5 in [2]) a unique ab-
solutely continuous path s € R+ [Fen(-,8)](s) € We(’lz) (O(M)) with the
properties that?

(2.3) [Ben(t,8)](0) =Fe(t,8) and w([Fen(t;8)]'(s)) = h(?)
for all t € [0,1] and s € R. In fact?, if, for g € H,
s €R — [O.n(-,8)](s) € Wi (RY)
is determined by the equation
(24)  [Oen(t,8)](s) = B(t) — ¢([Sen(t:8)] (5)) [Oen(t, 8)] (5)
with ©,1(0,8) = 0 and [, n(t,g)] (0) = &(¢), then
(2.5) [Sen(t,8)](5) = Fe(t, [Oen(-,8)](5)).
Finally, set
(2.6) Hy = {h € H: h(1) =0},
and notice that, for any y € M,
(2.7) (g:h) € H(e,y) x Hy = [Ocn(-,8)](s) €H(e,y) forallseR

Lemma 2.8. Given (e,y) € O(M) x M and g € H(e,y), define Uegq :
H — H so that (cf. (2.4) and (2.5)) ¥eg(h) = [Ocn(-,8)](1). Then Vg
maps Hy into H(e,y); and, for each ro > 0, there exist (r;,2) € (0, 00)?
such that ¥, g | Ho N Bu(0,71)% is a diffeomorphism onto a neighborhood
of H(e,y) N Bu(g,r2) whenever ||g|lu < ro. »

Proof. First observe that

d
[Dabs(0)](8) = -2 [Tg(sh)] )] _ = [Ocn(t, )] 0)
Thus, by (2.4) and the second structural equation,

LD Teg(0)] (1) = h(t) — ¢([Fent 8)]'(0)&(0)

dt ]
— i)~ [ B(E(r).hn)y B0 dr

®In the following, and hereafter, we use prime to indicate differentiation with respect
to s.

“See Lemma 2.5 in [2] for more details.

*We use Bg(a,r) to denote the ball of radius r around a in the metric space E.
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and therefore the homomorphism
he H+— DU, (0)h = Dp¥,(0) c H

admits an inverse whose bound can be made to depend on ||g||u alone.
In particular, by the Implicit Function Theorem, for each ry > 0, there
is an 71 > 0 and an open neighborhood U of 0 in H such that ¥, g maps
By (0,r1) diffeomorphically onto a neighborhood of g+ U whenever ||gllg <
ro. Furthermore, since, by (2.7), we already know that ¥, takes Hy into
H(e, g), we will have completed the proof of the first part once we show that
there is an 75 > 0 such that ¥, 3 (H(e,y)NBru(g, 2)) € Hy for all ||g|lu < ro.
To this end, we apply the form of the Implicit Function Theorem given in
Theorem A.2 of [3] to the map h € H — F,(h) = F.(1,h) € M. Indeed,
because the Jacobian DF,(g) : H — T, (M) has full rank, that theorem
states that there is a smooth map E. g : ker(DF(g)) — ker(DFe(g))l and
positive ro and § such that

h € Bu(0,72) N ker(DFe(g)) =
Eeg(h) is the unique element of By(0,4) N ker(DFe(g))l
with F, (g +h+ Ee,g(h)) =y
whenever ||g|lg < 7. Further, by making ¢ smaller if necessary, we may

assume that ¥, s maps a neighborhood of 0 diffeomorphically onto a neigh-
borhood of {g + h + Z.g(h) : h € Bu(0,7)} and that the size of these

neighborhoods does not depend on ¢ € O(M) or g € Bu(0,79). Now
let (e,g) € O(M) x Bu(0,ry) and f € Bu(g,r2) N H(e,y) be given, set
k equal the orthogonal projection of f — g onto ker(DFe(g)), and define
f; = g + sk + E(sk) for s € [0,1]. Clearly, fy = g, fi = f, and f; € H(e,y)
for all s € [0,1]. Thus, if hy = ¥, 4(f;), then

f= we,g(hl)a hO € HO? and 7o [8:e,h3(1’ g)] (1) =Y for each s € [Oa 1]

In particular,

ho() =0 and 0 =w (2 [Fen (L8] (1)) = £ihu(0),

and so \Il;’é(f) =h; € Hy. qed.

Lemma 2.9. There is a unique minimal geodesic v : [0,1] — M from
z to y if and only if, for each ¢ € n~1(z), there is a unique £, € H(e,y) with
1ellg = dist(z,y), in which case

(2.10) 0.(t) = th., t €[0,1], where B, = ¢ '4(0).

559
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In fact, if there is only one such minimal geodesic v, and if 6. and £, are
defined accordingly, as in (2.10), then x ¢ Cn(y) if and only if there exists
an €; > O for which the symmetric quadratic form given by

1
[E"(e,9)] (g, 1) = (g, h) g + /0 (Q(Ge,g(t))ge(t,ee)ﬂe,h(t)) dt

R4
satisfies
(2.11) [E"(e,)](h,h) > &b, h e H.

Finally, the €5 in (2.11) can be chosen to be uniformly positive on compact
subsets of M \ Cn(y).
Proof. Observe that because

dist(z,y)? = min{|lg|# : & € He,y)}

and the minimum is achieved at ¢, € H(e,y) only if ¢, is linear, the first
assertion follows from the fact that 7 o F.(-,g) is a geodesic if and only if g
is linear.

To prove the second assertion, assume that there is only one minimal
geodesic 1y, from z to y on [0, 1], and define 6, and £, as in (2.10). By (2.7),
(2.5), and (2.3), we know that, for all h € Hy:

R4

(2.12) /lw Fenlt, le ](s))lzdt:2Al([ée,h(t,ée)](s),fl(t)) dt

vanishes at s = 0 and that
—dZ/l“’ ([Ben(t, £)] (s)]* dt
=0

=2 [ (30 - #([Sntt, 0] (0>)ee,h(t))Rd dt,

which, after integration by parts and an application of the second structural
equation, means that

>0
=0

7

(2.13) [E"(e,y)] 2d 12 / lw 3eh (¢, 2.) | dt
h € Hj.

In particular, (2.13) implies that, for any h € Hy,
[E"(e,y)](h,h) =0 < [E"(e,y)](h,g) =0 for all g € Hy,
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which, after integration by parts and elementary analysis, leads to

[E"(¢,y)] (-, h) =0 <= h e C*([0,1];R%)

(2'14) and h(t) = <I>(02, h(t)) B, t € [Oa 1]'

32 (t)‘et)

To complete the proof from here, observe that ¢ € [0,1] — Y (t) €
Ty (M) is a Jacobi field along v if and only if h = F.(-,£)”'Y satisfies
the equation on the right-hand side of (2.14). In particular, if (2.11) holds
for some € > 0, then there is no Jacobi field along v which vanishes at both
ends. Conversely, suppose no such Jacobi field exists. Then

(2.15) h e Hy\ {0} = [E"(e,y)](h,h) >0.

Finally, suppose that K is a compact subset of 771 (M \ Cpn(y)) and that
there were sequences {¢,}$° C K and {h,}{° C Hy with the properties that

(hallm =1 and [E’(en,y)](hy, hy) — 0.

Then, without loss in generality, we will assume: e, — ¢ € 7~} (M \Cm(y))
and h,, — h € Hj.
Note (cf. (2.1)) that

”hnﬂgh_mn——)oo”hn”H and
1
h h
/0(‘1)(0211’ "(t))&n(t,fgn)ecﬂ’ n(t))Rd dt

1
— /0 (206,80, )0 BB, .

In particular,
0< [E"(e,y)] (h,h) <lim, ;e [E”(en, y)] (hn,hy) =0,

and therefore h = 0. But this means that
0= Il = [E"(e,)] (b, 1) = im [E"(en,4)] (s, he) = lim [haly =1,

which is impossible. Thus there must exist an € > 0 for which (2.14) obtains
forallz € K. q.ed.

Lemma 2.16. Let z ¢ Cp(y) and ¢ € m71(z) be given, and define
Yz € C°°([0, 1];M), 0. € R%, and £, € H as in Lemma 2.9. Then, for each
v € R¢ there is a unique &, , € C?([0,1;R?) such that

(217) €¢,v(0) =V, €¢,v(1) = Oa and ée,v(t) = ‘I)(eh £¢,v(t))3¢(t,ee)0°'
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In fact, (e,v) € 771 (M\Cp,(y)) XR? —> €.v € CH0,1]; R?) is continuous.
Finally,

Nev =V — €e,v

1
(2.18) = [ (0(Benlt, L)](9)): v () _dt| =0
0 =0
for allh € Ho
Proof. To prove that £, exists and is a continuous function, set

Oev(8) = expy(e (sev) for e € 7r"1(M\ Cm(y)) and s € R. Next, let 7 > 0
and a compact subset K of 771(M \ Cpy(y)) be given, and choose § > 0 so
that o.v(s) € Cr(y) for e € K, |v| <r, and |s| < §. Now define

Bev(s) = exp;el‘v(s) (y) and [Lev(t)](s) = exp,, , (s) (tZev(s)), t€[0,1]
for e € K, |v| £, and |s| < é. Then, as is well-known,

€ [0,1] = Yeu(t) = [Tew (0] (0) € T, (M)
is a Jacobi field along +y,(), and, by construction, Y, v(0) = ev while Y'(1) =
0. Hence, we can take &,,(t) = Fe(t,£) 'Yev(t), and clearly (e,v) €
K x Bga(0,7) — &,, € C?([0,1];R?) is continuous. Moreover, to prove
uniqueness, simply observe that if A(¢) is the difference of two solutions and

Z(t) = Fe(t, L) A(t), then Z is a Jacobi field along «y, which vanishes at both
ends.

Turning to (2.18), observe (cf. (2.4)) that

/0( ([8e(t,)](s) =nev()) S
/0 (B — ¢([Ben(t, )] (O 7 (1)), dt
1 1
/0 e, (1 dt—/o (<I>(0e,v—ne,v(t))&(t’ec)ee,h(t))Rddt
/01 (€e,v( ) — (9u€e,v(t))52(t,£¢)0, h(t))Rd dt = 0,

where we have used integration by parts, the second structural equation,
and the symmetry

(¢(€17€2)€3:€4)Rd = (®(€3a€4)€17€2)Rd- g.e.d.
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Theorem 2.19. For e € 171 (M \ Cn(y)), define 6, € R? and £, € H
accordingly, as in (2.10), and set (cf. (2.18) and (2.2))

2
(220) [Ev(e,9)](g) = % - (ﬂe,v,g)H for g € H(e,y) and v € R,

Then, for each compact subset K of (M \ Cm(y)), there is a 6 > 0 with
the properties that

(e,v) € K x BRa(0,8) = £, is the only g € H(e,y)
at which Ey(e,y) achieves its minimum value and

2 T
(2.21) %[Ev(e,y)] (/0 w([@e,h(T,ee)](s)) dT) B

for h € Hy g {0}.

>0

Proof. Because of the equality in (2.13) and the estimate in (2.11), we
know that there is an ¢ > 0 and a §; > 0 for which

% [Ev(e,y)] ( /O | w[Fen(r, )] (5) ds)

whenever (e,v,h) € K x Bpa(0,6;) x Hy. Moreover, by Lemma 2.8, one
knows that there exist positive 71 and ry such that

>

€ 2
> —|b|lg
s=0 2 ’

he HO N BH(077'1) —r [ee,h( : ,Ze)] (1) € H(eﬂy)

(2.22) . . :
is diffeomorphic onto a neighborhood of H(e,y) N Bu(0,72)

for every e € O(M). Hence, by (2.18) and Taylor’s Theorem, for some r > 0,

(2.23) g€ H(e,y) N (Bulle, )\ {&}) = [Bv(e,9)](8) > [Bv(e,y)] (L)

whenever (e,v) € K X Bga(0,61).
Starting from (2.23), one can now show that there is an o > 0 with the
property that

(2.24) ¢ € K, g € H(e,y) \ {£},
' and [Ey(e,)](8) > [Ev(e,5)] (L) = ligllu = Mellrr + o,

whenever |v| < §;. In fact, if this were not the case, then we could use
(2.23) to find a {e,}$° C K and {g,}5° C H(en,y) \ Bu(l.,,r) such that
e, — e € K, (cf. (2.2)) gn >—> g € H(e,y), and ||gnllm — ||€e||a. Since
this means that

£l < liglla < im nooollgnlle = [1£e]l5,
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gr — 8, llgllm = l|€ellu, and therefore g = ¢,. On the other hand, since,
llgn — £ellzx > r, this is impossible.

Finally, to complete the proof, suppose that (e,v) € K x Bpa(0,d1)
and that g € H(e,y) satisfies [Ev(e,y)](g) = [Ev(e,%)](¢). Then, by
Schwarz’s inequality and elementary manipulation of quadratics, ||g|lg <
l€ellsz + 6177, v |lzx- Hence (cf. Lemma 2.16) we can choose 0 < § < 41 so that
(2.24) guarantees that we are done. q.e.d.

We are now ready to formulate the conclusions of Theorem 2.1 and
Theorem 3.12 in [4] so that they may be easily applied to the expressions in
(1.8) and (1.9). In the following statement, g : (0,1] x 20 x R — R will
be a function of one of the following forms:

4 1
/ go(t, w,F.(t,w), A, (¢, w)a(t)) dt,
0
1

/0 (1,[; (Se (¢, w), A, 7(t, w)a(t)) , odw(t))

9(T,w,e) = T LS RY’
/ ( | @trw), A w)aliFettw),
\ Aot W) 0 dw(r),0dw(®)) .
where®

o€ 0% ([0,1] x 2 x O(M) x R4 R), 3 € CR(O(M) x REGRY),
and ¥ € CR(O(M) x R? x O(M) x R?; Hom(R?; RY)),

and a and B are smooth R?-valued paths on [0,1]. Finally, for £ € H, we
take, respectively,

r

1
A (,D(t, ea Se (ta g)a a(t)) dt’
1 .
/O 1 (#3529, a(t)),ﬁ(t))Rd dt,
JACTURCE
5e(t,0,B(1) i), E0) .
Obviously, g(0,¢, ¢) = limg~ g(7, £, ¢) when one adopts the convention that

Stratonovich calculus reverts to ordinary calculus when dealing with abso-
lutely continuous paths.

9(0,¢4,¢) = <

.

®f € C% if f € C*™ and all its derivatives have tempered growth.



HEAT KERNEL ESTIMATE

Theorem 2.25. Define 6, € R%, ¢, € H, and 7.v €H ve R?, for
e€n (M \ Cn(y)) asin (2.10) and (2.18), and set

1
(226)  fo(T,w,¢) = /0 (A (t, W) (£), AW () gt — (s L)

- Nezt, given a compact K C w7 (M \ Cpn(y)), choose § > 0 as in Theo-
rem 2.19. Then, for v € Bra(0,1) and a € (=4,4),

lim sup |EFT [g(T,w, ¢) exp (Q—M)
(2.27) TH0eck T

™ OSQ(I,W) = y]
—c(a, e)g(O,Ee,e)‘ =0,

where ¢ € K — c(a, ¢) € (0,00) is a continuous function which is equal to
1 when a = 0.

Proof. The proof of (2.27) comes down to checking that the hypotheses
of Theorem 4.21 in [3] are met. In matching the notation there with that
here, one should use the following table:

there here

8 T

Yy e

0 w
f(s,0,v) afy(T,w,e)
F(s,0,y) 7o F(1,w)

p(y) —31LI3

9(s,0,9) 9(T,w,¢).

The critical fact to be observed is that, because |av| < ¢ and af, = fqv,
(2.21) guarantees that the conditions in (4.14) and (4.22) of [3] are satisfied.
In addition, one should note that, because Ar(t,w)n, () is continuously
differentiable with respect to ¢ € [0, 1], there is no problem coming from the
1t0 stochastic integral, which can, in fact, be replaced by a Riemann-Stieltjes
integral. In particular, for each v € R%, one can use (1.3) to see that there
is a B(v) < oo for which

|fo(T, w,e)| < B)(T||wllan + llw — Lellag), ¢ € K.
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Knowing that Theorem 4.21 of [3] applies, we conclude that there is, for
each |a| < 4, a continuous ¢ € K — C(a, ¢) € (0,00) such that

o4 AL W(T, W,
Jim T% exp (”—J—H) BT [g(T,w, ¢) exp (9‘f—(—5ple—)) 8y(m ose(l,w))]

= C(a,¢)g(0,4,,¢)

uniformly in ¢ € K for each choice of the functions ¢, 1, and ¥ entering
the definition of g. In particular, by applying this result again when a =0
and g = 1 and then taking ratios to get the conditional expectation value,
one arrives at (2.27). q.e.d.

Corollary 2.29. Forz,y € M, let E(z,y) = 4 dist(z,y)?. Then E(-,y)
is a smooth function on M\Cp,(y). Moreover,

(230) Jim [TV 1og pr(-, )] () = ~[VE(,)] (0
and
(2.31) %1{‘1%) [T Hesslog pr(-,y)] (e) = —[Hess E(-,y)] (e)

uniformly on compact subsets of M \ Cp,(y).

Proof. Define 6, € R?, £, € H, as in (2.10), and v € R? — ¢, , € H,
as in Lemma 2.16, for e € 771 (M \ Crn(y))-

We begin by pointing out that when one translates the results in Section
2 of Chapter 9 [1] into the language of the orthogonal frame bundle, one
finds that

eay  (VECIO) = [EGEC9]E) = ~(v,0)
= (ge,v"ee)H
and
(v, [Hess E(-,y)] (e)v) R
(2.33) = [EW)’E(-,9)] (e)

= /0 1 (eew®P = (2080 €v®) .00 Een(®) ) .

Thus, what we have’ to do is to show that —T[£(v)logpr(-,¥)](e) and
—T[£(v)?logpr(-,y)](e) tend, uniformly on compacts, to the right-hand

"Actually, from general principles, (0.3) plus locally bounded convergence of the left
hands sides already guarantees that the right-hand sides of (2.32) and (2.33) must be what
they are.
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sides of (2.32) and (2.33), respectively. In particular, (2.30) is now an easy
consequence of (1.8), with n =, ,,, and (2.27) with o = 0 and

oT,w0,6) = [ (Aatm)in, (0, aw(0)
=_ /1 (Ae,T(t,W)ée,v(t), Odw(t))
0

since there is no distinction between It6 and Stratonovich integration here
and he,v = "Ee,v~

The verification of (2.31) is somewhat more involved and consists of
several steps. First one should notice that, when n = 5, ,,, the first two
terms of the right-hand side of (1.9) can be rewritten in the following ways:

R4’

1 1 .
/ | A7 (t, W), (1) dt = / | Az (t, W)E. o (1)]” dt,
0 0

and

[ (it w0, i)

1 t
- / ( / \pe,T,v(T,t,w)odw(r),odw(t))
0 0 Ré
where

U rv(T,t,w); = (q)(ejaAe,T(t’W)ﬁe,v(t))gc(,.,w)eiaAe,T(TaW)Ee,v(T))

for 1 <i,5 < d. At the same time, the third term on the right of (1.9) is
dominated (cf. (1.7)) by a constant times

/ lw(1) ()2 dt.

Hence, by taking @ = 0 and g(T',w,¢) appropriately, (1.9), with n = n, ,,
and (2.27) lead to

R4

lim [T [S(v)2 log pr(-,¥)](e) — %Vare,y,v(T)]

N0 ;
/ € ()] dt + / ( / (@(ee,m,v(t))ge(f,e,)%é‘e,v(ﬂ)wdT) dt

/0 € (O] dt + /0 (@00 (7)) g gy P (),
= ~[E@ B ) ),
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where the convergence is uniform on compact subsets of 7~ (M \ Crn(y))
and (cf. (2.26))

2

Varey(T) =EPr [( /0 (At Wi 0, dw(t))Rd)

moFe(l,w) = yJ

e [ / (At w0, awlt).

< BT [fo (T, w, e)?| 70 Gl w) = 3.

Fe(l, w) = y]

Thus, we will be done once we show that, for each compact
KQW_I(M\Cm( )),

lim sup — IE"T [fo(T,w,¢) lWOS 1L,w)=y] =0

™0 eEK
But, by (2.27) with g7 = 1, we know that there is a § > 0 for which
Sup ]E;LT [exp (afV(T) W’ e))

T€(0,1] T
ecK

o F(l,w) zyJ < 00

for a € (—4¢,4), which means, of course, that

2
(2.34) Tsel(lg)l] EXT [ —fv—(?i) woF.(l,w) = y] < 00
€K

for all p € [1,00). q.e.d.

When z € Cp,(y), we cannot, in general, say what are the limits of
the left-hand sides of (2.30) and (2.31) as T\, 0. Nonetheless, there are
circumstances in which we can say something; namely, set

M(z,y) = {Xx € Tp,(M) : y = exp,(X,) and dist(z,y) = |Xxsz(M)}
and
Mo9) = { (W) € M@, x (LD {0)) - 45 exp. (Ko + W20, _y=0 ]

Clearly, £ € Cn(y) if and only if either M(z,y) contains more than one
element or M (z,y) # 0.
Theorem 2.35. Assume that M(z,y) contains more than one element
and that there ezists a submanifold M (z, y) 2 M(z,y) of Tp(M) with the
property that

——

(X, Wa) € M(z,y) = Wo £ Tx, (M(z,y)).
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"

Further, assume that M(x,y) has positive measure when M (z,y) is given
the measure determined by the Riemannian structure which it inherits as
a submanifold. If e € n~1(x), then there ewists a non-degenerate (i.e., not
concentrated at a single point) Borel probability measure Aeyy) ON R which
is supported on {0, € R? : ef, € M(z,y)} and for which

236) Jim TEW ogpr(- 1)) = = [(v,00me Ay (@), v R

In addition, for each v € R¢:

lim 7% [£(v)2logpr(-,y)](e)

TNO 2
(2.37) /(V,Ge)ﬁd Aeg)(dOe) — (/(v, 0. )Ra A(e,y)(dOe)> :

In particular,

(2.38) }%TIV logpr(-,v)|(e) < dist(z,y)
and
(2.39) :,111{% T?[Hesslog pr(-,y)](e) # 0.

Proof. Given v € S§%°1) take n(t) = tv, t € [0,1], in (1.8) and (1.9).
After making the same sort of dictionary as we did in the proof of Theo-
rem 2.29, one can apply Theorem 2.1 in [4] to the expressions on the right-
hand sides of (1.8) and (1.9) to obtain (2.36) and (2.37). Moreover, given
these, (2.38) and (2.39) are simply expressions of the non-degeneracy of
)\(e,y). q.e.d.

Remork 2.40. As the reader has probably guessed, higher derivative
analogs of (2.30) and (2.31) hold and can be proved by the techniques used
here. In fact, sufficient diligence combined with the estimate in (2.34) are
all that is required.
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